Bimonoids for Hyperplane Arrangements


This product is not available in the selected currency.

Descripció

The goal of this monograph is to develop Hopf theory in a new setting which features centrally a real hyperplane arrangement. The new theory is parallel to the classical theory of connected Hopf algebras, and relates to it when specialized to the braid arrangement. Joyal's theory of combinatorial species, ideas from Tits' theory of buildings, and Rota's work on incidence algebras inspire and find a common expression in this theory. The authors introduce notions of monoid, comonoid, bimonoid, and Lie monoid relative to a fixed hyperplane arrangement. They also construct universal bimonoids by using generalizations of the classical notions of shuffle and quasishuffle, and establish the Borel-Hopf, Poincare-Birkhoff-Witt, and Cartier-Milnor-Moore theorems in this setting. This monograph opens a vast new area of research. It will be of interest to students and researchers working in the areas of hyperplane arrangements, semigroup theory, Hopf algebras, algebraic Lie theory, operads, and category theory.

Detalls del producte

Editorial
Cambridge University Press
Data de publicació
Idioma
Anglès
Tipus
Tapa dura
EAN/UPC
9781108495806
Matèries IBIC:

Obtingues ingressos recomanant llibres

Genera ingressos compartint enllaços dels teus llibres favorits a través del programa d’afiliats.

Uneix-te al programa d’afiliats