Automorphisms of the Lattice of Recursively Enumerable Sets

This product is not available in the selected currency.


This work explores the connection between the lattice of recursively enumerable (r.e.) sets and the r.e. Turing degrees. Cholak presents a degree-theoretic technique for constructing both automorphisms of the lattice of r.e. sets and isomorphisms between various substructures of the lattice. In addition to providing another proof of Soare's Extension Theorem, this technique is used to prove a collection of new results, including: every non recursive r.e. set is automorphic to a high r.e. set; and for every non recursive r.e. set $A$ and for every high r.e. degree h there is an r.e. set $B$ in h such that $A$ and $B$ form isomorphic principal filters in the lattice of r.e. sets.

Detalls del producte

American Mathematical Society
Data de publicació
Matèries IBIC:

Obtingues ingressos recomanant llibres

Genera ingressos compartint enllaços dels teus llibres favorits a través del programa d’afiliats.

Uneix-te al programa d’afiliats